
Learning from examples in fully connected committee machines

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 4919

(http://iopscience.iop.org/0305-4470/26/19/024)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 4919-4936. Printed in the UK 
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Denmark 

Received 19 January 1993 

Abstract. The problem of learning from examples in two-layer neural networks is studied 
within the framework of statistical mechanics. A fully connected committee machine is trained 
lo implement a task which is not linearly separable. The generalization error as a function of the 
number of training examples per adjustable weight is calculated in the annealed approximation. 
For both binary and continuous weights we find a fintarder transition with a discontinuous 
drop in the generalization error. The vansitions (K.CUT due to a specialization of the bidden units 
from a symmevic state lo one with each hidden unit in the student network specialized on a 
corresponding unit in the teacher network. The symmetric stafes of poor generalization remain 
metastable even for large mining sets. 

1. Introduction 

The ability to extract an underlying rule from a given data set is a key feature of feedfonvard 
neural networks 111. Such a network performs a mapping from any input configuration io 
the output paramehized by a set of weights. The goal of learning is to adapt the weights to 
model an unknown mapping which has produced a given set of input-output pairs. 

There has been much interest in applying methods from statistical mechanics to study 
the leaming properties of neural networks (for a went  review see, e.g., 121). Two properties 
have been of particular interest. The capacity of a network reflects the maximum number 
of random input-output relations it can store, while the generalization error describes the 
quality of the modelling achieved by the network for a given rule. After the network has 
been trained on a set of examples generated by the target rule, the generalization error 
measures its average error on an arbitrary new input 

Following Gardner's approach [3] these'properties have initially been explored for the 
simplest network, the single-layer perceptron [4] with one layer of weights connecting 
inputs and outputs [3,5,6,7, 81. As an extension of this work to more complex networks 
recent interest has focussed on networks with an additional layer of hidden units. While 
the computational power of single-layer perceptrons is limited to linearly separable lasks, 
networks with only one hidden layer can implement any Boolean or continuous function of 
the inputs 19, IO]. 

As an example of such an architecture the so-called committee machine 1111 has been 
S h k e d  [12, 13, 14, 15, 161. In this network the weights from the hidden to the output 
layer are fixed to +1 and the network realizes a majority decision of the hidden units. For 
binary weights this may already be regarded as the most general two-layer architecture, 
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because any other combination of weights can be gauged to +I by flipping the signs of the 
corresponding input-hidden weights. 

Recent work has been concemed with the --version of this,model, in which the 
hidden units receive their inputs from non-overlapping regions of the input layer. Both 
the capacity [12, 141 and the generalization problem [15, 161 have been studied for this 
restricted architecture. Due to the lack of correlations among the hidden units the tree 
committee machine exhibits generalization properties similar to a simple perceptron. In 
the limit of a large number of hidden units the difference to a simple perceptron can be 
expressed by an effective choice of the order parameters. 

In the more general fully connected committee machine each hidden unit receives inputs 
from the entire input layer, yielding correlations between different hidden units. The capacity 
problem for this architecture has recently been studied in [12, 141. For large committees 
correlations between hidden units tend to zero, revealing the same capacity per synapse as 
in the tree model [ 141. In this paper we explore the leaming of a rule in a fully connected 
committee machine, calculating the generalization error for a target rule which itself is 
defined by a committee machine and therefore not linearly separable. We do this within the 
annealed approximation and in the limir of a large network, in which both the number of 
inputs N and the number of hidden units K tend to infinity, We find that the generalization 
properties are different from those found in the tree version. 

The paper is organized as follows. In section 2 the model is described in more detail, 
and the statistical mechanics approach is outlined. In sections 3 and 4 the calculation of 
the generalization error is presented for networks with both continuous and binary weights. 
Finally, section 5 gives a summary of the results and a brief discussion. The results of this 
work have been reported previously in preliminary form in [17]. 

2. The model 

Throughout this paper we will study a two-layer network with N input units Si,i  E 
[ I , .  . , , N I ,  one layer of K hidden units U[. I E 11,. . . , K], and a single output unit (see 
figure 1). The hidden units will be referred to as students. They are each simple percept" 
defined by N-dimensional weight vectors W, with outputs 
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All students receive the same input and are connected to the overall output through weights 
which are all fixed to +I .  Hence, the network output is given by 

This architecture is called a commirtee machine [ll],  because the network output 
corresponds to the output of the majority of the hidden units. We study supervised leaming 
of a given rule defined by another committee machine with weight vectors V, hidden units 
rL and an overall output T(S) of the form (2). The teacher weight vectors are taken to 
be normalized to fl  and mutually uncorrelated, N-' fl . V, = &. Note that in the 
thermodynamic limit the orthogonality condition does not have to be imposed explicitely, 
because K randomly drawn vectors (with K << N )  will always be orthogonal. Furthermore, 
no corresponding restriction is imposed on the student weights, and the training dynamics 
can introduce correlations between different hidden units, because their receptive fields 
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are identical. The only information about the target rule available during training is a set 
of P = aK N input-output pairs (e&, r (ep) ) ,  p, E (1,. . . , P). of the teacher network. No 
explicit information about the states of the teacher hidden units is provided. The components 
of the training inputs er are drawn independently from a Gaussian distribution with zero 
mean and unit variance. Note, however, that for large N our results do not depend on the 
specific form of the distribution. 

The statistical mechanics approach reviewed in [2] formulates learning as a stochastic 
minimization process with a formal energy given by the training error, here defined as the 
number of misclassified training examples 

We consider a stochastic leaming process that for long training times yields a Gibbs 
distribution in the space of couplings with measure 

Constraints ‘on the student weights are included in the normalized U priori measure 
dpo((W1). For continuous weights this is a product of delta functions consmining each 
Wf to length a. For binary weights we just get a sum over all Wf E ( i l ) N .  Z is the 
partition function 

and the formal temperature T = 1/p describes the amount of noise during the training 
process. 

Generally, the goal of leaming is to achieve the best possible network pe~ormance 
for new inputs which were not used as training examples. The quantity one would like 
to minimize is the generulizurion error, the probability of misclassifying a new example 
randomly chosen from the entire distribution of inputs 

(6) 

Here, we focus on the calculation of the average generalization error cg = (( ( ~ ( ( W J } )  )T )), 
where (.,.)T denotes a thermal average over the distribution (4) and ((...)) denotes a 
quenched average over all possible training sets. 

Within the framework of statistical mechanics this quantity may be determined from the 
average free energy F = -T ({In Z )). As a useful approximation we employ the annealed 

dW,})  = (@[-ow * t(S)l)s. 
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approximation, which replaces the average of the logarithm of Z by the logarithm of the 
average of Z, yielding a lower bound for the free energy F, = -T In (( Z))  5 F .  In 
general the annealed approximation is only valid at high temperatures. However, previous 
work indicates that for realizable rules, as in the present problem, this bound serves as a 
good approximation and predicts correctly the shape of learning curves at finite T [7, 181. 

If the training examples are drawn independently from the same distribution, the average 
of the partition function over the mining examples yields 

H Schwane and J H e m  

(( Z)) = / dpo ([WI}) e-PG((Wti’ (7) 

with an effective Hamiltonian G([Wf}), which can be written for Boolean outputs as [7] 

G({Wt}) = -In[l - (1 - e-B)e([Wi])]. (8) 

As will be shown below, e((W,}) can be expressed as a function of two sets of order 
parameters: the overlaps between the student and teacher weight vectors, Rik = N-‘ Wl’Vk, 
and the mutual overlaps in the student network Cfk = N-’ W I .  wk. Therefore we can 
replace the integration over the weights W1 by integrations over Rik and c,k, introducing 
an additional ‘entropy’ factor 

expINKGdRik, C d }  = /dpo(W,)) - 
1.k 

(9) 

Now (7) becomes 

(2) = /k%dcikI expl-NK(a G[Rik,  Cfkl - G o [ R w  ‘&I)} 

and in the thennodynamic limit (N -+ 00) the order parameters can be obtained by 
minimizing the free energy density f with respect to RI,, and C I ~ ,  where 

bf [Rtx, c i k l  =~aGIRik, Cfkl - Go[&, cfkl. (10) 

Using the values of the order parameters at the minimum o f f ,  we can calculate the average 
generalization error. In the following sections this will be described for committee machines 
with both continuous and binary weights in the limit of a large number of hidden units K. 

3. Continuous weights 

The calculation of the generalization error (6) and the entropy term (9) follows the 
methods introduced by Gardner [3] aiid Gyorgyi and Tishby [5] for simple perceptrons 
and subsequently extended to the case of two-layer architectures [12, 14, 151. In order to 
proceed, we need to make symmetry assumptions for the order parameters Rik and Clk at 
the minimum of the free energy. Since the target rule in our problem has the same structure 
as the student network, the generalization error vanishes for the choice Rfk = Cfk = 6 f k  
of the order parameters. During training, the network only receives information about the 
overall target output rather than the outputs of the individual hidden units. It is therefore 
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reasonable to make a translationally-symmetric ansae for the order parameters R I ~  and CIr 
but allowing for an additional specialization of the individual students which breaks this 
symmetry. We assume that each student has an overlap R + A with one of the teachers and 
an overlap R with the remaining ones, yielding 

R I ~  = R + A&k C I ~  = C + (1 - C)&x . (11) 

With this ansatz the integral over weight space in the expression of the entropy term 
(9) can be performed after introducing integral representations of the &functions. A 
straightforward calculation using the saddle point method yields (see appendix A) 

1 K - 1  
In(1-C-A’) Co(A. R ,  C) = - ( I  + I n k )  + -- 

1 
2K 

1 
2 2 K  

(12) 

Note that the last term in (12) imposes geomehical constraints on the possible values for R 
and C. The argument of the logarithm has to be positive, yielding the conditions 

+ - l n [ ( l - C - A 2 ) - K ( K R Z - C + 2 A R ) ] .  

(13) 
1 

KR2 - C + 2AR < - 
K and therefore R < - 

where we have assumed that R, A, C ? 0. The second condition can be interpreted as 
the maximal overlap of a single student vector with K orthogonal teacher vectors. For the 
following it will be convenient to introduce the abbreviation D = K(KR2-C+2AR) < 1. 

The calculation of the generalization error for a given network (6) requires an average 
over the distribution of inputs. We introduce new variables for the internal fields UI = 
N - i  WI - S  in~the student network and ut = N-iV -S in the teacher network, respectively, 
by inserting corresponding &functions. Using integral representations of the 6-functions 
now yields 

After averaging over the distribution of inputs and introducing the order parameters with 
the ansatz (1 1) the integrals over the GI’s and El’s can be done. Furthermore we introduce 
internal representations {UI]  for the student network and {TI] for the teacher network to 
obtain (for details see appendix B) 
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Figure 2. Leaming curve for a fully con- 
nected committee machine with continuous 
weighu at T = 0.5, The appmach lo the 
residual error is shown, including I/* 
consCtions for K = 5 (solid line). K = 11 
(doaed line). and K = 100 (dashed line). 
The broken line corresponds IO the solution 
wilh A > 0. 

where H ( x )  = SxmDz and Dz = dz 
Further simplifications of (15) for large K require assumptions about how the order 

parameters scale with the number of hidden units. The possible magnitude of the symmetric 
overlaps R and C is restricted by geometrical limitations, and the conditions (13) imposed 
by the entmpy term provide upper bounds for the scaling of R and C. However, at the 
minimum of the free energy a different scaling is valid. To see this, we introduce the 
rescaled parameters 

r = K3l4R c = KIPC (16) 

and determine their values at the minimum of the free energy (10) self-consistently. With 
this scaling assumption we can proceed with the calculation of the generalization error for 
large K as described in appendix B. To order t / f i  we obtain 

The entropy (12). expressed as a function of r and c, is 

h(1- A' - c / d )  Go(A, r. c)  = - ( I  + In2n) + -- 1 1 K - 1  
2 2 K  

1 
2K f - In[(l - A2 - c / d )  - d ( r 2  - c + 2K-'/4rA)] 

+U(&) 

With these expressions for the entropy and the generalization error, together with (8), 
we can minimize the free energy (10) to find the equilibrium values of the order parameters. 
Taking the derivatives of the free energy with respect to A,  r and c yields after some algebra 
the conditions 

with y(j3) = -[(I - e-8)-' - e0]/(4n) and €0 = H - ' C O S - ~ ( ~ )  Fi: 0.206. At 
high temperatures y(p) is proportional to T. In terms of the original parameters equation 
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(19) implies C - K R 2  < 0. This corresponds to an effective anticorrelation of the hidden 
units, because student vectors which are uncorrelated except for their common overlap R 
to K orthogonal teacher vectors would yield C - K RZ = 0. A similar anticorrelation was 
also found in the capacity calculation for this architecture [12, 141 and can be interpreted 
as a ‘division of labour’[l4] between hidden units. Inserting (19) in (17) yields the average 
generalization error as a function of a 

= €0 + & Y ( B )  + U( a) ’ €0 = cos-’ (E) = 0.206. (20) 
Jr 

For large values of a the leading correction in (20) vanishes and the generalization error 
approaches a non-vanishing constant value as shown in figure 2 for different values of K.  
An approach to the optimal value = 0 cannot happen in this state, because it would 
require a close approach of each student to one of the teachers, implying A > 0. On 
the other hand, a deviation from A = 0 does not happen, because the solution with non- 
specialized students is favored by the entropy term (18). while A does not contribute to 
leading order to the generalization error (17). 

So far we have assumed that the parameters r and c are of order one. However, if 
they are very small, A will dominate both terms in the free energy and a non-vanishing 
equilibrium value of A is possible.~ To investigate the free energy in this region of parameter 
space we introduce a new set of parameters, given by 

p = K R  = K114r q = K C  =*c. (21) 

which are now assumed to be of order one. Inserting these into (17) and (18) yields 

1 
< ( A , p . q )  = -cos-‘ 

Jr 

1 1 
2K 2K 

+- In[l - f.p + A)’ + q ]  - - In(1 - A’) +U 

The values of p and q at the minimum of the corresponding free energy can readily be 
obtained as 

- A + .(a). (23) 
J r -2  1 

q = ( p + A ) ’ - I + U  

Hence, to leading order in 1/K we are left with a free energy as a function of A 

~ ~ ( A ) = - a l n [ l - ( l - e - p ) € ( A ) ] -  -(1+In2n) - -In(l-A*) 

€(A) = H  cos-'[/^/^]. Jr - 2  

The term independent of a is simply the entropy of a simple perceptron with overlap A to 
the teacher. As shown in figure 3, for small values of a, f(A) has a single minimum at 
A = 0 corresponding to the residual generalization ermr €0 (20). Note that for A + 0 the 
order parameters p and q diverge. This is due to the fact that for this solution the assumed 
scaling is not correct. As was shown above, the symmetric solution (19) is characterized 
by the scaling (16), which corresponds to infinite p and q. However, at a critical value cis 

1 1 
2 2 

(W 
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Figure 3. Free energy f(A) for continuous 
weights and different values of e. The free 
energy has always a minimum at A = 0, but 
withincreasing e a second minimum appears 
at A close to 1. For large e this becomes 
the global minimum of f. Note that the 
horizontal axis has a logarithmic scale in 
(I - A) to show both minima in one plot. 

Pire 4. Annealed phase diagiam for the 
large-K committee machine with continuous 
weights. The solid line marks the location 
of the phase transition. while the dotled line 
corresponds to the spinodal line. In region I 
f(A) has only a minimum at A = 0, in 
region I1 the additional minimum with A 

10 15 20 25 30 35 close to 1 is metastable, and in region 111 
this becomes the global minimum of f (A). 

;.' 
b o , 6 /  , , , / y  ~~~, 1 

0.4 

0.2 

0.0 

n 

of the load parameter, a second local minimum appears at a value of A close to 1 and finite 
values for p and q. It becomes the global minimum at a higher cu, as. Thus the system 
undergoes a discontinuous transition from a symmetic state to a specialized state in which 
each student has an overlap of order 1 with one of the teachers and an overlap of order 1/K 
with the remaining ones. The generalization error of the specialized state decays smoothly 
(see figure 2). In the limit CY + 00 we find A -+ 1 and eg % 2(1 - e-#)-' /a. As can 
be seen from equation (23). the order parameters 4 and p vanish for A 3 1, reflecting 
the structure of the target rule. Only when the network has leamt the rule perfectly does 
the student network adopt the orthogonality of the teacher vectors. The locations of the 
appearance of the second minimum in the free energy and the phase transition are shown 
in the phase diagram in figure 4. 

The symmetric state remains metastable for all a > a,, and a stochastic learning 
procedure starting with A = 0 will first settle into this local minimum. For large N it 
will take an exponentially long time to cross the free energy barrier to the global minimum 

In the foregoing discussion we have considered a training set of size proportional to 
the num3er of adjustable weights in the network, and the load parameter CY = P / ( K N )  
was assumed to be finite. Although they reveal the interesting feaNres of the generalization 
curve, our results are not valid for all values of CY. The leading correction to the residual 
error in (20) is only small for 01 >> 1/K and diverges for a -+ 0. However, for the region 

o f f .  
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where U itself is of order I/K we can construct another self-consistent solution for the 
minimum of the free energy. In the following we assume that a is small, such that 6 = K a  
is of order one. Using the same scaling assumption for the order parameters as in (21) we 
now have to minimize the free energy density 

(25) 
6 
K Bf(A,p,q) =--In11 - ( l - e - B ) ~ ( A , p , q ) l - G ~ ( A , p , q ) .  

with €(A, p.  q)  and Go(A, p ,  q )  given by (22). This scaling of the order parameters ensures 
that in both contributions to f the terms depending on p and q are of the same order in 
l / K .  However, the A-dependence is dominated by the entropy term, forcing the system to 
stay in the poorly-generalizing solution with A = 0. At the minimum of the free energy 
we get the conditions 

A = O  

The last equation can be solved numerically yielding a smoothly decreasing generalization 
error as a function of 6. The asymptotic solution for large values of 6 can easily be obtained 
and is determined by o( &, pz = q( l  + U ( I / d ) ) .  The generalization error behaves 
like ea = eo + U(1/ 3 a) approaching the residual error given by (20). There is no phase 
transition in this region of a. when the number of training examples is not proportional to 
the number of hidden units, the free energy (25) is dominated by the entropy term, while the 
term proportional to 6 only contributes to order I/K. Therefore., the average generalization 
error can not achieve its optimal value e8 = 0. 

4. Binary weights 

In this section we consider a committee machine in which all the weights are restricted to 
the values f l .  First we study the scaling ansatz (21). which for continuous weights revealed 
the location of the phase transition. In the case of binary weights we only have to modify 
the entropy term (9), which now involves a sum over all configurations Wl E 
A calculation similar to the one preceding equation (24) leads again to the problem of 
minimizing a free energy as a function of A 

1 + A  I - A  
B f ( A ) = - a  ln[l-(l-e+)e(A)] + "In(r) 2 + ! $ I ~ ( ~ )  

(27) 
with the same expression for €(A) as in (24). The entropy term now corresponds to the 
entropy of a simple perceptron with binary weights. Due to this difference. f now has 
two local minima for all values of a, one at A = 0 and the other at A = 1 (see figure 5). 
For small a the minimum at A = 0 is the global one. The corresponding state with non- 
specialized hidden units and with generalization error EO is the equilibrium state. As for 
continuous weights, the correct description of this solution requires a different scaling of the 
order parameters, which will be described below. At a critical value of the load parameter, 
given by 
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the free energy of this state vanishes. For larger values a z 'ac the minimum at A = 1 
has the lower free energy. We have a discontinuous transition from a symmetric state to 
a state of perfect generalization in which each student is perfectly aligned with one of the 
teachers. As in the continuous case, the minimum at A = 0 does not vanish even for 
large a. Figures 6 and 7 show the large4 predictions for the generalization error of a 
binary-weight committee machine compared to Monte Carlo simulations with K = 3 and 
5. The annealed phase diagram is shown in figure 8. 

H Schwane and J Hertz 
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Fwre 5. Free energy as function of A 
for binary weights and different values of 
(1. The free energy has always WO minima, 
one at A = 0 and the other at A = 1. At 
a critical value of (I the relative heights of 
the two minima switches and a l intader  
m i t i o n  occm. 

~~ 

Figure 6. Generalization error for a binary- 
weight commitlee machine with K = 3 and 
at T .= 5. The solid line shows the large- 
K prediction for the generalization error 
in the equilibrium state including If&? 
corrections. 'The genemlization error of the 
metastablestate isshown dotled. Thedashed 
line corresponds to the solution valid for 
(I - O(l /K) .  where the solid line diverges. 
These ~wults are compared la Monte Carlo 
simulations for N = 45 and K = 3. 
averaged over different runs and for different 
numten of Monte Carlo steps ( ~ c s ) .  

Similar transitions due to a freezing of degrees of freedom have also been found in other 
binary models (e.g. [7,15, 16,18, 191). In a committee machine with 3 hidden units learning 
a linearly separable task, this freezing was found to be asymmetric [13]: individual hidden 
units can align perfectly with the simple teacher perceptron. yielding a stepwise decrease 
in the generalization error. In order to investigate whether an asymmetric freezing also 
occurs in our model, we introduce a partially-symmetric ansatz for the order parameters. 
Following [13] we assume that (1 - q ) K ,  q E [O, 11, students are perfectly aligned with 
one of the teachers respectively (each teacher corresponding to only one student). The 
remaining qK students are assumed to have symmetric overlaps R with all the teachers and 
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0.50Pi' " : " ' ' '  ' " " " "  

Figure 7. Generalization error for a binary- 
weight committee machine with K = 5 and 
at T = 5. The large-K predictions for the 
different regions are compared with Monte 
Carlo simulations (N = 45, K = 5,  T = 5). 
The solid line corresponds to the equilibrium 
state, the dotted line to the metastable state 

0 ,oo [ , , , , , , , , , , , 1 , , , , , , , , , , I  and the dashed line to lhe smaU-a  solution.^ 
The results of the simdations are aver&& 

0 5 10 15 2o 25 30 o v e r a l l m ( + ~ a n d t h e m n s i n  whichno . .  
M = P/KN W n g  occurred (*),respectively. 

1 .o 

,... _.,...... .." ...... " 0.4 

0.2 s<o Figure 8. Annealed phase diagram for 
lhe large-K committee machine with binary 
weights The solid line marks the lwation 
of the phase transition. In the region below 

2'5 3.0 3'5 4'0 4'5 5.0 thedortedline,theentropyofthemetastable 
M state i s  negative. 

...... 

€-+ 

0.0 

mutual overlaps C, yielding 

otherwise. 
( &  otherwise 

Having made this ansatz we can proceed with the calculation of th' entropy term GO and 
the generalization enor E as a function of the order parameters R and C. For the entropy 
term we get to order 1 /K  

q K - 1  1 
G o ( R , C ) = q l n 2 - - -  c + - In[(l- q ~ )  - ~ K ( K R ~  - c)]. 

2 K  2K 

As for continuous weights, the logarithmic term imposes geometrical constraints on the 
parameters R and C 

1 
K R ~ - C <  - 

OK 
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For the generaliiation error we obtain similarly to the derivation of (15) 
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In the sums and products, 1 ranges over all hidden units, over the q K  unfrozen units and 
K over the (1 - q)K  frozen units. In order to obtain the dependence of E on q for large K 
we make use of the constraints (32) and proceed similarly to the previous calculation. For 
large K we can expand the H-function and do the traces. The result is that we obtain to 
leading order in 1 / K  and for q >> K-'I4 simply E ( R ,  C) = €0. independent of q. Since 
the leading term of the entropy (30) is proportional to q, the free energy (10) increases if q 
deviates from 1. Therefore, any solution with a fraction (1 - q) of perfectly aligned hidden 
units, such that K-'I4 << q < 1, has to be metastable, in conrrast to the case of a finite-K 
committee machine trained on a lineariy separable task [131. 

The generalization error of the symmetric state approaches the residual value €0 as 
a + w. This approach can be examined more closely hy calculating the generalization 
error for q = 1. As a function of the rescaled parameters r and c as in (16). it is simply 
given by our previous expression (17) with A = 0 

The entropy (30) with q = 1 as a function of r and c is 

We compare this expression to the corresponding entropy (18) in the continuous model 
with A = 0. To this order and up to a constant, they only differ in the dependence on c. 
However, the derivative of (35) with respect to c 

only differs from the derivative of (18) to order 1 /K .  This difference does not alter the 
solution (19) for the order parameters. In both cases the approach of the generalization error 
to the constant €0 is given by (20) as shown in figures 2, 6 and 7 for different values of 
K. In the large-K limit the discreteness of the weights only influences the behavior of the 
equilibrium state beyond the phase transition. While in the binary model a perfect alignment 
of the students with the teachers is possible, this cannot happen in the continuous-weight 
case. 

We have performed Monte Carlo simulations to check our analytic results for binary 
weights using networks with N = 45 input units and K = 3 and 5 hidden units. Although 
we cannot expect good quantitative agreement with the large-K theory for these small 
committees, we found qualitative support for our findings. The simulations indicate a 
symmetric freezing of all hidden units at the critical value ac. In some runs we found 
evidence for the occurrence of metastable states with only some students perfectly aligned 
with a teacher. However, an analytic description of these states would require a calculation 
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for finite K .  Figure 6 shows results for K = 3 averaged over different simulations. The 
solid line corresponds to the predictions of (20) including I/* corrections. It shows the 
location of the phase transition and the divergence for small values of a. The location of the 
transition for K = 3 found in the simulation lies somewhat below the large-K prediction. 
A comparison of results for different numbers of Monte Carlo steps shows the influence 
of the metastable state even at high temperature (T = 5). Some simulations remain in the 
metastable state even for large a and long training times, yielding a rather smooth decay 
of the averaged generalization error to a small but non-vanishing value. This behavior is 
reflected in a double-peak structure of the distribution of the order parameters sampled over 
different simulations. The predictions for the metastable state can be checked by separately 
averaging over those simulations in which no freezing occurred as shown in figure 7 for 
K =.5. 

The predictions of the annealed approximation can be checked by calculating the 
training error E, = a - ' a ( p f ) / a g  and the thermodynamic entropy s = - a f / a T .  The 
annealed approximation predicts a simple relationship between the training error and the 
generalization error [7] 

While we find a good agreement with our simulations at high temperatures, the annealed 
approximation fails to correctly predict the training error of the poorly-generalizing state at 
low temperatures. In particular, for zero temperature the annealed approximation predicts 
er = 0 for all a, clearly violating the correct limit E ! ,  eS -+ €0 as a + cx [71. Furthermore, 
the annealed approximation yields a region (below the dotted line in figure 8), where the 
metastable state has a negative entmpy. This is unphysical in a binary model, and the 
annealed description of the metastable state cannot be adequate in this region. A full 
quenched theory with broken replica symmetry will be necessary to describe it. However, 
the annealed predictions for the generalization error of the poorly-generalizing state are in 
good agreement with our simulations even at low temperature and large values of a. 

5. Summary 

In summary, we have solved the generalization problem for a fully connected committee 
machine within the annealed approximation. The target rule was defined by another such 
network and thus not linearly separable. While the generalization properties of a committee 
machine with non-overlapping receptive fields [15, 161 are qualitatively similar to those of 
a simple perceptron, the fully connected architecture shows additional features. 

The most important is the finding of a bansition from an unspecialized or permutation- 
symmetric state, in which the overlaps between any one of its hidden unit weight vectors 
and those of all the hidden units of the teacher are equal, to a specialized one, in which 
each hidden unit weight vector becomes strongly correlated with that of a particular hidden 
unit of the teacher. This transition has no counterpart in single-layer machines, where such 
specialization has no meaning. 

We have found that a committee machine trained on insufficient data (or < ac) will 
always adopt the symmetric learning strategy with equal overlaps between each of its 
hidden unit weight vectors and those of all the teacher's hidden units. It is unable to 
learn the necessary specialization of its hidden units in which they come to match those 
of the teacher. Because the correct learning of the task requires this specialization, the 
symmetric solution always has a generalization error greater than €0 % 0.206. Furthermore, 
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even when the training set is large enough to permit specialization ((I > aC), the system 
can be trapped in the metastable symmetric state. This metastability persists for arbitrarily 
large training sets. 

The symmetry breaking occurs via a first-order transition for both continuous and binary 
weights. Thus the present problem differs from the corresponding one for single-layer 
machines, where a discontinuous transition occurs only in the binary case. However, even 
in the binary case the similarity is only superficial. In the single-layer machine the transition 
is simply the point where the free energies of the poorly-generalizing and correct solutions 
cross, while in the committee machine it involves breaking a permutation symmetry. 

Although discontinuous transitions have previously been found in single-layer networks 
with continuous weights [6,8], the reasons for them were rather different from those in the 
present model. Watkin and Rau [SI found a discontinuous transition in an unleamable 
problem, and Sompolinsky er al [6] studied a quasidiscrete simple perceptron with a 
bimodal distribution of weights centered around f l .  Their model interpolated between 
a spherical perceptron, in which no transition occurs, and a perceptron with binary weights. 
In contrast, the transition found here occurs in a learnable problem for spherical weights 
without further restrictions on the weight vectors and involves an intrinsically multilayer 
effect: the specialization of individual hidden units. 

Recently Hansel et al [ 191 found a similar behavior in a parity machine with 2 hidden 
units and non-overlapping receptive fields. Due to the invariance of the network output under 
an inversion of the weight vector (W + W‘ = -W), their model always has a solution 
with vanishing student-teacher overlap. Therefore, the parity machine fails completely to 
generalize for small a. The output of the fully connected committee machine is invariant 
under a permutation of hidden units [12]. In contrast to the parity machine, this invariance 
allows for a translationally symmetric solution with small student-teacher overlaps and thus 

No state comparable to the symmetric, poorly-generalizing one was found in the non- 
overlapping architecture [15, 161, because there the specialization of the students was built 
into the model. In the fully connected committee a specialization of the individual students 
breaks the translational symmetry and only occurs if the training set is sufficiently large. 
Furthermore, the poorly-generalizing metastable state survives beyond the phase transition 
even for arbitrarily large (I, another feature not found in the tree model. 

The problem of learning a classification task which is not linearly separable is of practical 
importance, and two-layer networks are widely used in this context. In this paper we have 
studied the special case of a target rule whose structure is identical to the learning network, a 
situation which is the exception in practical applications. It would be desirable to extend this 
work to the learning of rules which do not match the structure of the learning network. This 
includes both unleamable rules and functions which could be learned by smaller networks. 
Recently the learning of unlearnable rules by simple percept” has been studied in [7, 81. 
An example of a small committee machine learning a function which could be realized by 
a simple perceptron has been studied in [13]. Furthermore, for a correct description of the 
metastable states at low temperatures the annealed approximation is not trustworthy and the 
quenched theory should be solved. 
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Appendix A 

In this appendix we give a more detailed description of the calculation of the entropy term 
(12) for continuous weights. Starting out from equation (9) we use integral representations 
of the &functions 

introducing the parameters d j k ,  e l k  conjugate to the order parameters R I ~ ,  

parameters El for the normalization condition N = WI . W,. This leaves us with 

expINKGoIRiw, clkll = [d&d& dE11 explNK&[&. Gx, ~ I A ,  &, E111 

where 

and additional 

s 

In the thermodynamic limit ( N  + CO), the integrals over &, & and El can be done 
using the saddle point methods. With the symmetry ansatz (11) for the order parameters 
and correspondingly for their conjugate parameters and E1 at the saddle point, (AZ) reads 

1 1 6, = E + (A + KR); + ( A +  R ) A  - -(K - 1)Ct + -1n2 
2 KN 

2 = / Y d W  exp( - F [ E  wz + ( f i d  U + A W .  Wl 
(A3) 

with the abbreviation U = l j f i  Et V, (note that vZ = 1jK 
linearizing the square of the sum of weight vectors, using 

fl. V, = N). After 

the integrals over weights and subsequently the integral over z can easily be done. We 
obtain at the saddle point 

1 A2 2 E - ( K - I ) e  1 ..Ki?+2A. +- - f - R  
2 2E 2 E - K t  2 2 E - K e  

1 K - l  1 
2 K  2K 2 

In 2E - - ln(2E - K e )  + - l n2 r  
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and the conditions 
A - - A + K R  

A = -  K R = - A -  
(1 - C )  - A2 11 + (K - 1)C] - [A + KRI2 

1 1 2 E  = K C ? = 2 E -  
(1 - C) - A2 [I f (K - 1)C] - [A + KR]’ 

leading to Go in the form (12). 

Appendix B 

In this appendix we present the derivation of the generalization error (17) starting from 
equation (14). The average over inputs in (14) yields, assuming the same Gaussian 
distribution of inputs as for the training examples 

Now the integrals over the GI’s and CI’S can be done, if we use a relation analogous to 
(A41 to linearize squares of sums of 21’s in the exponent, yielding an additional Gaussian 
integral over t .  So far we have 

[(l - C) - A2]-’flexp 1 (UI - AUI - R xk - i t w ) ’  

I (I - C )  - A2 

(B3) 

The @-function can be factorized by introducing intemal representations in the teacher 
{rl = & I ]  and the student network {UI =&I) ,  yielding 
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Now the ul-integrals factorize and can be done. Making use of the identity @(ab) = 
O(a)O(b) + O(-a)O(-b) we obtain equation (15) for the generalization error of a 
committee machine with K hidden units. 

We can factorize this expression in I if we control the sum K-'P ck U& by a new 
variable s. Inserting the identity 

we obtain 

where 

(B7) 
f i R s + A u i - i t m  

J 1 - C - A z  
2, = 

To do the traces, we introduce integral representations of the @functions 

and similarly for @(-K-l/' El q )  with the integration variables p and y. Now the traces 
can be done, using 

with the notation A(q)  = 1 - ~ ~ ( 2 1 ) .  NOW we are left with the integrals 

8.s 
,- For large K and with the scaling (1 6) for the order parameters we can expand the integrand to 

order 1/K, using the identity H(a+&) = k ( a ) + m & e - " z / z - a  . e 2 e - Q ' ~ Z / ~ + O ( & 3 ) .  
To order 1/K, we get for the integral 

- (iK1I4rs +t&) x - (y - Ax) v] 
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leading to 

H Schwarze and 3 Hertz 

The s-integral just yields a &-function, and all the remaining integrals can be done. We 
finally obtain equation (17) for the generalization error. 
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